New ALICE experiment results show novel phenomena in proton collisions
Publication by ALICE Collaboration, including 19 Utrecht researchers
In a paper published on 24 April in , the ALICE collaboration reports that proton collisions sometimes present similar patterns to those observed in the collisions of heavy nuclei. This behaviour was spotted through observation of so-called strange hadrons in certain proton collisions in which a large number of particles are created. Strange hadrons are well-known particles with names such as Kaon, Lambda, Xi and Omega, all containing at least one so-called strange quark. The observed 鈥榚nhanced production of strange particles鈥 is a familiar feature of quark-gluon plasma, a very hot and dense state of matter that existed just a few millionths of a second after the Big Bang, and is commonly created in collisions of heavy nuclei. But it is the first time ever that such a phenomenon is unambiguously observed in the rare proton collisions in which many particles are created. This result is likely to challenge existing theoretical models that do not predict an increase of strange particles in these events.
The ALICE collaboration is an international group of researchers. 19 researchers from Utrecht 木瓜福利影视 are part of the collaboration, among which staff researchers Thomas Peitzmann, Raimond Snellings, Andre Mischke, and Alessandro Grelli.
鈥淲e are very excited about this discovery,鈥 said Federico Antinori, Spokesperson of the ALICE collaboration. 鈥淲e are again learning a lot about this primordial state of matter. Being able to isolate the quark-gluon-plasma-like phenomena in a smaller and simpler system, such as the collision between two protons, opens up an entirely new dimension for the study of the properties of the fundamental state that our universe emerged from.鈥
Strong interaction
The study of the quark-gluon plasma provides a way to investigate the properties of strong interaction, one of the four known fundamental forces, while enhanced strangeness production is a manifestation of this state of matter. The quark-gluon plasma is produced at sufficiently high temperature and energy density, when ordinary matter undergoes a transition to a phase in which quarks and gluons become 鈥榝ree鈥 and are thus no longer confined within hadrons. These conditions can be obtained at the Large Hadron Collider by colliding heavy nuclei at high energy. Strange quarks are heavier than the quarks composing normal matter, and typically harder to produce. But this changes in presence of the high energy density of the quark-gluon plasma, which rebalances the creation of strange quarks relative to non-strange ones. This phenomenon may now have been observed within proton collisions as well.
Strangeness production
In particular, the new results show that the production rate of these strange hadrons increases with the 鈥榤ultiplicity鈥 鈥 the number of particles produced in a given collision 鈥 faster than that of other particles generated in the same collision. While the structure of the proton does not include strange quarks, data also show that the higher the number of strange quarks contained in the induced hadron, the stronger is the increase of its production rate. No dependence on the collision energy or the mass of the generated particles is observed, demonstrating that the observed phenomenon is related to the strange quark content of the particles produced. Strangeness production is in practice determined by counting the number of strange particles produced in a given collision, and calculating the ratio of strange to non-strange particles.
Heavy-nuclei-like properties
Enhanced strangeness production had been suggested as a possible consequence of quark-gluon plasma formation since the early eighties, and discovered in collisions of nuclei in the nineties by experiments at CERN鈥檚 Super Proton Synchrotron. Another possible consequence of the quark gluon plasma formation is a spatial correlation of the final state particles, causing a distinct preferential alignment with the shape of a ridge. Following its detection in heavy-nuclei collisions, the ridge has also been seen in high-multiplicity proton collisions at the Large Hadron Collider, giving the first indication that proton collisions could present heavy-nuclei-like properties. Studying these processes more precisely will be key to better understand the microscopic mechanisms of the quark-gluon plasma and the collective behaviour of particles in small systems.
The ALICE experiment has been designed to study collisions of heavy nuclei. It also studies proton-proton collisions, which primarily provide reference data for the heavy-nuclei collisions. The reported measurements have been performed with 7 TeV proton collision data from LHC run 1.
The ratios of the yields of single (KS0 and 螞) and multi-strange particles (螢 and 惟) to the pion (蟺 + + 蟺 鈭 ) yield as a function of the charge particle multiplicity 鉄╠Nch /d畏鉄 in proton-proton, proton-lead and lead-lead collisions. A significant enhancement of strange to non-strange hadron production is observed with increasing particle multiplicity in pp collisions.